

Schème-1: Outline for extraction of compound.

Table-1: Determination of the inhibition zone of the D. adscendens leaves extract.

	Inhibition Zone (ø mm) (D. adscendens)						
M.O	El		CN (-)		CN(+)		
	We	MWE	H ₂ 0d	MW (50%)	Ар	Gt	Ny
E.c	9±1	12±1	0	0	58±3	55±2	na
C.a	na	10±1	0	0	na	na	53±1
A.n	na	na	0	0	na	na	47±1
P.a	7±1	11±2	0	0	45±3	45±2	na
B.s	8±1	11±1	0	0	55±3	45±2	na
S.a	11±2	13±2	0	0	56±3	44±2	na

- Values are mean \pm SD of three determinations.
- S.a : Staphylococcus aureus ; B.s : Bacillus subtilis ; E.c. : Escherichia coli ; P.a. : Pseudomonas aeruginos; A.n.: Aspergillus niger ; C.a.: Candida albicans.
- water extract, MWE: methanol-water extract.
- W (-): didistillate water negative control, MW (-): methanol water (50/50 v/v) negative control.
- Ap (+): Ampicillin positif control; Gt(+): gentamicin positif control; Ny (+): Nystanin positif control; na: not actif.

NO	CMI (mg/ml) (D. adscendens)					
M.O		Ef	CN(+) µg/ml			
	We	MWE	Ар	Gt	Ny	
E.c.	150	100	10	10	nd	
C.a.	nd	>100	nd	nd	10	
A.n.	nd	nd	nd	nd	10	
P.a.	>150	>100	10	10	nd	
B.s.	>150	>100	10	10	nd	
S.a.	>150	>100	10	10	nd	

 Table-2: Determination of Concentration Minimal of Inhibition (CMI).

• nd: not determined. We : water extract, MWE : methanol water extract.

• CN(-): negative control, CN(+): positive control.

Table-3: Qualitative and quantitative analyses of essential oils of *D. adscendens* leaves.

Ref	Rt (min)	Compounds	% (v/v ml)
1	3.08	2-pentyl furan	2.71
2	3.16	1-methyl silabenzène	1.97
3	3.32	azido-4 heptane	2.02
4	3.65	2- (N-methyl pyrrolidine) methanamine	0.57
5	3.92	ol-1, 3-,hexene	1.92
6	6.90	2,2- dimethyl-hexanale	3.37
7	6.97	3-octenol	0.55
8	10.40	geraniol	5.42
9	10.54	pelargonaldehyde	3.26
10	13.14	methyl benzoate	0.51
11	13.34	perillardehyde	0.57
12	19.40	α-terpinolene	1.82
13	20.04	linalool	2.64
14	20.24	α-caryophyllene	4.67
15	20.45	mandelique acid	1.48
16	20.84	ß-ionone	3.47
17	20.92	ol-13 8-cedrene,	0.62
18	21.15	eudesma	7.41
19	21.78	α-terpinene	1.29
20	21.81	3-(2-pentyl) 1, 2,4- cyclopentanetrione	0.58
21	22.85	oleic acid	2.68
22	23.38	caryophyllene oxide	11.32
23	24.04	epoxide II humulene	1.68
24	29.05	phytone	14.72
25	29.37	scytalone	3.83
26	30.44	hyperforine	3.07
27	31.47	palmitic acid	5.06
28	31.68	margaric acid	1.71
29	32.15	αisomethyl ionone	1.67
30	33.91	linoleic	1.42
31	34.02	4, 6,9- nonadecatriene	0.83
32	34.78	cetanole	1.22

• Ref = Reference; Rt =Retention time

Table-4: Identifies phenolic compounds.

Ref.	Rt (min)	Identified compounds
1	34.47 ± 0.03	<i>p</i> -coumaric acid
2	29.32 ± 0.06	caffeic acid
3	36.72 ± 0.08	rutin
4	31.95 ± 0.04	epicatechin
5	42.65 ± 0.09	quercetin

Atome	¹ Hδ (ppm)	J(Hz)	¹³ C, δ (ppm)	HMQC
1			171.03	
2			162.16	
3	7.63-7.57 (d)	15	146.66	
4.5	7.46-7.43 (m)		131.09	(H-4/C-4)
				(H-5/C-5
6			127.23	
7.8	6.82-6.81 (m)		116.80	(H-7/C-7)
				(H-8/C-8)
9	6.31-6.25 (d)	15	115.59	

Table-5: Structural NMR analyses of compound X₁.

<u> </u>	able- 6: Struc	tural NMR an	alyses of compo	bund X_2 .
Ator	ne ¹ H d (p	pm) J(Hz)	¹³ C δ (ppm)	HMQC
1			171.03	
2			149.47	
3		0 (1) 17	147.03	
4	1.53-1.5	0 (d) 17	146.81	H-4/ C-4
5	6 70 6 74	5 (m)	127.78	
7	6 95-6 91	(III)	116.47	H-7/C-7
8	6.24-6.1	8 (d) 17	115.51	H-8/C-8
9	7.04-7.03	3 (m)	115.05	H-9/C-9
Т	able- 7: Struc	tural NMR an	alyses of compo	und X ₃ .
Atome (X	\mathbf{L}_{8}) ¹ H δ (p	pm) J(Hz)	¹³ C δ (ppm)	HMQC
1			179.37	
2			170.53	
3			166.38	
4			162.94	
5			159.31	
6			158.35	
7			149.95	
8			145.94	
9			135.62	
10	7.67-7.62	2 (m)	123.59	H-10/ C-10
11	7.67-7.62	2 (m)	123.11	H-11/C-11
12	6.89-6.8	5 (d) 10	117.67	H-12/ C-12
13			115.95	
14	3.83-3.7	9 (d) 10	105.44	H-14/ C-14
15	6.40 ((s)	104.68	H-15/ C-15
16	6.21-6.2	0 (d) 1.3	102.39	H-16/ C-16
17	5.12-5.0	9 (d) 7.5	100.09	H-17/ C-17
18	3.83-3.79	9 (m)	94.94	H-18/ C-18
19	3.63-3.00	6 (m)	78.13	H-19/ C-19
20	3.63-3.00	6 (m)	77.17	H-20/ C-20
21	3.63-3.00	6 (m)	75.64	H-21/ C-21
22	3.63-3.00	6 (m)	73.92	H-22/ C-22
23	3.63-3.00	6 (m)	72.20	H-23/ C-23
24	3.63-3.00	6 (m)	72.09	H-24/ C-24
25	3.63-3.00	6 (m)	69.70	H-25/C-25
26	3 63 3 0	5(m)	69.29	211 26/ C 26

7

1.28-1.25 (d)

17.88

3H-27/C-27

27

Atome	¹ Η δ (ppm)	J(Hz)	¹³ C δ (ppm)	HMQC
1			158.01	
2			157.67	
3			157.37	
4			145.94	
5			145.78	
6			132.29	
7	6.82-6.74(m)		119.38	H-7/C-7
8	6.82-6.74(m)		115.87	H-8/C-8
9	6.98-6.97(d)	2.5	115.31	H-9/C-9
10			100.05	
11	5.94-5.90(m)		96.36	H-11/C-11
12	5.94-5.90(m)		95.87	H-12/C-12
13	5.94-5.90(s)		79.88	H-13/C-13
14	4.81-4.16(m)		67.49	H-14/C-14
15	2.92-2.69(m)		29.27	2H-15/C-15

Table- 8: Structural NMR analyses of compound X₄.

Table -9: NMR structural characteristics of compound X₅.

Atome (X_{13})	¹ Η δ (ppm)	J(Hz)	¹³ C δ (ppm)	HMQC
1			177.32	
2			165.56	
3			162.51	
4			158.21	
5			148.76	
6			147.97	
7			146.21	
8			136.00	
9			124.13	
10	7.74-7.73 (m)		121.65	H-10/C-10
11	7.65-7.64 (m)		116.20	H-11/C-11
12	6.89-6.86 (m)		115.97	H-12/C-12
13			104.00	
14	6.39-6.38 (d)	2.5	99.21	H-14/C-14
15	6.18-6.17 (d)	2.5	94.38	H-15/C-15